If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m^2-21m-90=0
a = 3; b = -21; c = -90;
Δ = b2-4ac
Δ = -212-4·3·(-90)
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-39}{2*3}=\frac{-18}{6} =-3 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+39}{2*3}=\frac{60}{6} =10 $
| 10000=x-250 | | 10000=250x-250 | | 10000=250x | | 10000=250-x | | 6x+18=5x-18 | | 4(x-3)-2x+2=6 | | D³-5d²-9d+45=0 | | 6(x+2)=3(2-3x) | | 6(3p^2+p)=0 | | 5q(q-7)=-60 | | 3k(k+1)=18 | | 4x=4+8 | | 5/x+2=9/2x | | x+x/2=39 | | 2x+28-3x=40 | | (n/5)+5=3 | | 5^2x=67 | | 3(x-3)=6x-30 | | y/3+5=5/3 | | 3x-8=2x=5 | | 8(u+8)=-7u+4 | | -(2x+5)=-2(x+4)-19 | | 2x+10+6x+1+79=180 | | 33+3y-9=15y-11-5y | | 7u=12+3u | | 2(x-1)=3x=14 | | 33+3y-9=15y-5y | | (12x-51)=93 | | 17x-6=14x-12 | | 3(-6x+1)=-9(2x+3) | | 3×+2=2x+8 | | b=40+3W/5 |